

Grapa: Graph Autoencoder for tensorflow

A simple python3 library using keras and tensorflow to do Deep Learning on Graphs, with a strong emphasis on Codes that chance the Shape of the Graph in a way that can be used for Autoencoder

We split our Code into two different Apis: a low level Layer Api, and a high Level Functional Api. We also provide 5 different example Applications to get you started using grapa as fast as possible.

pip install grapatf

Contents:

	Download my Masters thesis

	Getting started
	Top Tagging

	Finding unused accounts in a social Network

	Faster regression on molecular data

	Anomaly Detection on Feynman Diagramms

	Generating recipes using grapa and a gan

	Layer Api
	gadd1

	gaddbias

	gaddzeros

	gaddparam

	gbrokengrowth

	glbuilder

	gchooseparam

	gcomdensediverge

	gcomdensemerge

	gcomdepoollg

	gcomdepoolplus

	gcomdepool

	gcomdex

	gcomdiagraph

	gcomextractdiag

	gcomfullyconnected

	gcomgpool

	gcomgraphand2

	gcomgraphand

	gcomgraphcombinations

	gcomgraphcutter

	gcomgraphfrom2param

	gcomgraphfromparam

	gcomgraphlevel

	gcomgraphlevel

	gcomjpool

	gcomparamcombinations

	gcomparamlevel

	gcomparastract

	gcompoolmerge

	gcompool

	gcomreopool

	gcutparam

	gcutter

	gecutter

	gfeatkeep

	gfeat

	gfromparam

	ggoparam

	ggraphstract

	ghealparam

	gkeepbuilder

	gkeepcutter

	gkeepmatcut

	glacreate

	glam

	glacreate

	gliam

	glim

	glkeep

	glmlp

	glm

	glom

	gl

	gltknd

	gltk

	gltrivmlp

	gmake1graph

	gmultiply

	gortho

	gpartinorm

	gperm

	gpoolgrowth

	gpool

	gpre1

	gpre2

	gpre3

	gpre4

	gpre5

	gremoveparam

	gshuffle

	gssort

	gsym

	gtbuilder

	gtlbuilder

	gtopk

	gvaluation

	multidense

	norm

	prep

	Functional Api
	multidense

	norm

	prep

	gq

	gaq

	gnl

	learngraph

	gll

	ganl

	abstr

	compress

	graphatbottleneck

	denseladder

	divtriv

	divccll

	divpar

	divcla

	divcla2

	divgra

	remparam

	handlereturn

	sortparam

	subedge

	edgeconv

	ge

	shuffleinp

	orthoinp

	perminp

	pnorm

	prevcut

	goparam

	decompress

Indices and tables

	Index

	Module Index

	Search Page

Download my Masters thesis

As this module is the product of my masters thesis, looking at it migth help you understand some parts of grapa further. You can download my masters thesis at

https://git.rwth-aachen.de/mthesis/write/-/raw/master/final/main.pdf?inline=false .

Also you can find my thesis defence presentation at

https://git.rwth-aachen.de/mthesis/plt/-/raw/master/out/main.pdf?inline=false

Getting started

We show you 5 different Applications, that should make it easy to work with grapa for everything you migth want to use it for

Contents:

	Top Tagging

	Finding unused accounts in a social Network

	Faster regression on molecular data

	Anomaly Detection on Feynman Diagramms

	Generating recipes using grapa and a gan

Top Tagging

This module is based on a master thesis about top tagging. So our first application is simply this.

This tutorial is not yet finalised, but can be found here https://colab.research.google.com/drive/1ENMFjLMXok2AePs0QTHF-4rmzUfab6Ub?usp=sharing later

Finding unused accounts in a social Network

This tutorial works on a simple generated social network, in which we try to find accounts used much less than other ones. If you dont like generated data, take a look at the alternative in the feynman diagram tutorial. It is very similar, but uses actual data. After reading it, you should have a basic understanding on how to create a graph autoencoder using grapa and why oneoff networks can improve on an autoencoder anomaly detection.
This it written in google colab, and you can find it here https://colab.research.google.com/drive/1t7is62gnfga_tzI79wiLTVdbgOt87zwU?usp=sharing

Faster regression on molecular data

This Tutorial will teach you about how to use grapa for normal graph classification or regression tasks. It will also show that grapa can help accelarating them. It is written in google colab, and you can find it here https://colab.research.google.com/drive/1FlXt4NJnqQqBJHqN-cp9KV00ulBwJ_SV?usp=sharing

Anomaly Detection on Feynman Diagramms

This Tutorial serves as an alternative to the social network case. Instead of generating arbitrary data, this tutorial tries to use particle physics as training data. It will also show you how to use more complicated decompression algorithms. It is written in google colab, and you can find it here https://colab.research.google.com/drive/1ujfDPspzOHJlsY6j4N43hrhDbV-BfTow?usp=sharing

Generating recipes using grapa and a gan

In this tutorial, we try to use grapa code to create a graph generative adversial network. We use this graph GAN to create recipes (We work on drink recipes to make these recipes easier).
This Tutorial is written in google colab, and you can find it here https://colab.research.google.com/drive/1k_rtfaJRCX06kIHzkzQ7Dnr6QR5k45jx?usp=sharing

Layer Api

The Layer Api contains many low level layers. This means that you can do much more than using the Functional Api, but whatever you do, migth be easier achieved by the Functional Api.

Contents:

	gadd1

	gaddbias

	gaddzeros

	gaddparam

	gbrokengrowth

	glbuilder

	gchooseparam

	gcomdensediverge

	gcomdensemerge

	gcomdepoollg

	gcomdepoolplus

	gcomdepool

	gcomdex

	gcomdiagraph

	gcomextractdiag

	gcomfullyconnected

	gcomgpool

	gcomgraphand2

	gcomgraphand

	gcomgraphcombinations

	gcomgraphcutter

	gcomgraphfrom2param

	gcomgraphfromparam

	gcomgraphlevel

	gcomgraphlevel

	gcomjpool

	gcomparamcombinations

	gcomparamlevel

	gcomparastract

	gcompoolmerge

	gcompool

	gcomreopool

	gcutparam

	gcutter

	gecutter

	gfeatkeep

	gfeat

	gfromparam

	ggoparam

	ggraphstract

	ghealparam

	gkeepbuilder

	gkeepcutter

	gkeepmatcut

	glacreate

	glam

	glacreate

	gliam

	glim

	glkeep

	glmlp

	glm

	glom

	gl

	gltknd

	gltk

	gltrivmlp

	gmake1graph

	gmultiply

	gortho

	gpartinorm

	gperm

	gpoolgrowth

	gpool

	gpre1

	gpre2

	gpre3

	gpre4

	gpre5

	gremoveparam

	gshuffle

	gssort

	gsym

	gtbuilder

	gtlbuilder

	gtopk

	gvaluation

	multidense

	norm

	prep

gadd1

Takes a Adjacency Matrix and adds an Identity to it

Arguments

	gs: The Number of Nodes of the Graph (Graph Size)

gaddbias

Takes a Feature Vector and adds a bias to it

Arguments

	gs: The Number of Nodes of the Graph (Graph Size)

	param: The Number of Features for each node

	metrik_init=”glorot_uniform”: initializer of the bias

	learnabel=True: Shall the Bias be learnable

gaddzeros

Takes a Feature Vector and creates some empty (zero) nodes

Arguments

	inn: The initial Number of Nodes of the Graph (Graph Size)

	out: The output Number of Nodes of the Graph (Graph Size)

	param: The Number of Features for each node

gaddparam

Adds entry parameters to each feature vector. Like gtopk without the graph learning

Arguments

	gs: The gs Number of Nodes of the Graph (Graph Size)

	param: The Number of Features for each node in the Feature Vector

	free=0: Add this many parameters

gbrokengrowth

Easy way to increase the number of nodes in a Feature Vector. Uses a single Dense Layer to transform every Feature in those that are new. Breaks the Graph Permutation Symmetry.

Arguments

	inn: The initial Number of Nodes of the Graph (Graph Size)

	out: The final Number of Nodes of the Graph (Graph Size)

	param: The Number of Features for each node

glbuilder

Similar to gbuilder and gkeepbuilder, this builds a Graph from a Feature Vector and concattes them

Arguments

	gs: The Number of Nodes of the Graph (Graph Size)

	param: The Number of Features for each node in the first input Vector

	free: Additional Features that are createt by this Layer

	metrik_initializer=metrik_init: Initializer of the Metrik of this Layer. Defaults to metrik_init which returns a 0 Matrix, with an 1 in the 4,5 (counting from 0) diagonal Entry.

gchooseparam

Transforms a Feature Vector into one with just q elements

Arguments

	gs: The Number of Nodes of the Graph (Graph Size)

	param: The Number of Features for each node

	q=[0,3]: which features to keep

gcomdensediverge

Inputs a 3d Vector of dimensions (-1,gs,param) and uses a simple dense Layer to transform it into (-1,gs,c,paramo) without breaking Graph Permutation Symmetry.
So transforms each Feature Vector into a set of c Feature Vectors.

Arguments

	gs: The Number of Nodes of the Graph (Graph Size)

	param: The Number of Features for each node

	paramo: The Number of Features each Outputvector should have

	c=2: The Number of Outputvectors for each Inputfeaturevector

	initializer=glorot_uniform: THe Transformation initializer

	learnabel=True: Shall the Transformation be learnable

gcomdensemerge

Takes a 4d Tensor (-1,gs,ags,param) and transforms it using a simple Dense Layer into a 3d one (-1,gs,paramo). Respects Graph permutation Symmetry. So Basically Transforms each set of vectors into one vector of different size

Arguments

	gs: The Number of Lists of Feature Vectors and the Number of Nodes in the Output

	ags: The Number of Vectors in each List of Input vector, could be understood as the opposite of c

	param: The Number of Features for each Input Node

	paramo: The Number of Features each Outputvector should have

	initializer=glorot_uniform: The Transformation initializer

	learnabel=True: Shall the Transformation be learnable

gcomdepoollg

Extension of gcomdepool by also learning a Graph. Breaks Graph Permutation Symmetry, by using a Dense layer to create a c*c Adjacency Matrix from all features. Returns the Feature Vectors and the Adjacency Matrices

Arguments

	gs: The initial Number of Nodes of the Graph (Graph Size)

	param: The initial Number of Features for each node

	paramo: The Number of Features each Outputvector should have

	c=2: The Factor by which to increase gs

	metrik_init=glorot_uniform: The Transformation initializer to go from little Feature Vector to output Vectors

	graph_init=keras.initializers.Identity(): The Initializer to create the Graph

	learnable=True: Shall the Transformation be learnable

gcomdepoolplus

Similar to gcomdepoollg, but the Graph is not a function of the Features, but a constant

Arguments

	gs: The initial Number of Nodes of the Graph (Graph Size)

	param: The initial Number of Features for each node

	paramo: The Number of Features each Outputvector should have

	c=2: The Factor by which to increase gs

	metrik_init=glorot_uniform: The Transformation initializer to go from little Feature Vector to output Vectors

	graph_init=keras.initializers.Identity(): The Initializer to create the Graph

	learnable=True: Shall the Transformation be learnable

gcomdepool

Transforms a 3d Vector (-1,gs,param) into a 4d vector (-1,gs,c,paramo) using a Dense Layer. It respects Graph Permutation Symmetry by simply transforming each Feauture Vector into a List of c Feature Vectors

Arguments

	gs: The initial Number of Nodes of the Graph (Graph Size)

	param: The initial Number of Features for each node

	paramo: The Number of Features each Outputvector should have

	c=2: The Factor by which to increase gs

	metrik_init=glorot_uniform: The Transformation initializer to go from little Feature Vector to output Vectors

	learnable=True: Shall the Transformation be learnable

gcomdex

Takes a Feature Vector and returns the Indices of this Feautre Vector in the node dimension in the Order of the last Feature (desc). Returned Integers are cast to float32 to keep the numeric types consistent.

Arguments

	gs: The Number of Nodes of the Graph (Graph Size)

	param: The Number of Features for each node

gcomdiagraph

Takes a Adjacency Matrix of Size (-1,gs,gs) and cuts out the diagonal Parts of it, here each diagonal entry has size (c,c), so that the result has the shape (-1,gs/c,c,c).

Arguments

	gs: The Number of Nodes of the Graph (Graph Size). Has to be a multiple of c

	c: The Number of Nodes in each subgraph

gcomextractdiag

Takes a 5 dimensional Tensor of size (-1,gs,gs,c,c) and transforms it into a 4d Tensor of size (-1,gs,c,c) by demanding that the second and third index are the same (A_ijklm into A_ijjlm)

Arguments

	gs: The Number of Nodes of the Graph (Graph Size).

	c: The Number of Nodes in each subgraph

gcomfullyconnected

Creates a fully connected Graph of size (-1,gs,gs) (so basically just a 1). Uses a Feature vector to find the size of the first dimension

Arguments

	gs: The Number of Nodes of the Graph (Graph Size).

	param: The Number of Features in each Node. Here only used for consistency checks

gcomgpool

Takes an Adjacency Matrix and a Feature Vector, orders the Feature Vector by its last Feature and the Adjacency Matrix in the same way. Then uses a learnable Transformation to go from each neighbouring c vectors of size param into one vector of size paramo. and uses mode to go from a big adjacency Matrix of size gs to one of size gs, after which it roundes the resulting Adjacency Matrix to either 0 or 1 and returns both the new Adjacency Matrix and the new Feature Vector. Basically a simpler (and not used by me) version of the function abstr

Arguments

	gs: The initial Number of Nodes of the Graph (Graph Size).

	param: The initial Number of Features in each Node.

	paramo: The resulting Number of Features in each Node.

	metrik_init=”glorot_uniform”: The initializer of the Feautre Vector tranformation

	learnable=True: weather the Transformation is learnable

	mode=”mean”: Either “mean”, “max” or “min”, The Transformation to go combine each subgraph into a single node

	cut=0.5: Where to round the graph after the mode transformation, Each Value above cut will be set to 1 and each value below to 0, each Value that is equal to cut will be also set to 1

	c_const=1000: Since the Rounding is implementet using relus (relu(1+c_const*(X-cut))-relu(c_const*(X-cut))) , you require a numerical constant to decide how fast the rounding function goes from 0 to 1. This could be set higher, but this could result in diverging gradients.

gcomgraphand2

Takes Two Adjacency Matrices of size c*gs and combines them in a way defined by mode. Here by setting the graph to size c*gs instead of gs is done just for consitency in a function

Arguments

	c*gs: The Number of Nodes of each Graph.

	mode: either “and”,”prod”,”or” or “sum”. Here “and” and “or” are Rounded versions of “prod” and “sum” respectively. The kind of Transformation that combines the Graphs.

	cut=0.5: Where to round the graph after the mode transformation, Each Value above cut will be set to 1 and each value below to 0, each Value that is equal to cut will be also set to 1

	c_const=1000: Since the Rounding is implementet using relus (relu(1+c_const*(X-cut))-relu(c_const*(X-cut))) , you require a numerical constant to decide how fast the rounding function goes from 0 to 1. This could be set higher, but this could result in diverging gradients.

gcomgraphand

Similar to gcomgraphand2 (yes the naming migth be a bit confusing). Here takes an Tensor of size (-1,gs,gs,c,c,n) resulting in (-1,gs,gs,c,c). So it runs the same kind of mode Transformation on a graph of n graphs (gs, c) instead of 2 graphs.

Arguments

	gs: The Number of Nodes in each global Graph.

	c=2: The Number of Nodes in each subgraph.

	n=2: The Number of Graphs that are combines using mode

	mode: either “and”,”prod”,”or” or “sum”. Here “and” and “or” are Rounded versions of “prod” and “sum” respectively. The kind of Transformation that combines the Graphs.

	cut=0.5: Where to round the graph after the mode transformation, Each Value above cut will be set to 1 and each value below to 0, each Value that is equal to cut will be also set to 1

	c_const=1000: Since the Rounding is implementet using relus (relu(1+c_const*(X-cut))-relu(c_const*(X-cut))) , you require a numerical constant to decide how fast the rounding function goes from 0 to 1. This could be set higher, but this could result in diverging gradients.

gcomgraphcombinations

Takes a 4d Layer os size (-1,gs,c,c) and concattes every possible combination in the first nonbatch dimension (-1,gs,gs,c,c,2)

Arguments

	gs: The size of the combination dimensions.

	c: The size of each subgraph

gcomgraphcutter

Takes a Adjacency Matrix of size gs, cuts it into c subgraphs, and uses mode Transformation to combine those c subgraphs and rounded the Grahs afterwards.

Arguments

	gs: The initial Number of Nodes in the Graph.

	c=2: The Number of subgraphs, must gs must divide it.

	mode: either “mean”,”min” or “max”. The kind of Transformation that combines the Graphs.

	cut=0.5: Where to round the graph after the mode transformation, Each Value above cut will be set to 1 and each value below to 0, each Value that is equal to cut will be also set to 1

	c_const=1000: Since the Rounding is implementet using relus (relu(1+c_const*(X-cut))-relu(c_const*(X-cut))) , you require a numerical constant to decide how fast the rounding function goes from 0 to 1. This could be set higher, but this could result in diverging gradients.

gcomgraphfrom2param

Takes a 5d Tensor of size (-1,gs,gs,param,n) and transforms it into (-1,gs,gs,c,c). So basically creates a Graph of size c for each set of n param vectors, using a simple Dense Layer to do the (param,n) to (c,c) transformation.

Arguments

	gs: The Number of Nodes in each global Graph.

	param: The Number of Features from which the graphs will be constructed

	c=2: The Number of Nodes in each resulting subgraph.

	n=2: The Number of Feature Vectors that result in each subgraph

	initializer=”glorot_uniform”: The initializer of the Transformation

	trainable=True: weather the Transformation is trainable

gcomgraphfromparam

similar to gcomgraphfrom2param but for a 3d Tensor instead of a 5d Tensor ((-1,gs,param) to (-1,gs,c,c))

Arguments

	gs: The Number of Nodes in each global Graph.

	param: The Number of Features from which the graphs will be constructed

	c=2: The Number of Nodes in each resulting subgraph.

	initializer=”glorot_uniform”: The initializer of the Transformation

	trainable=True: weather the Transformation is trainable

gcomgraphlevel

Converts a 5d Tensor of size (-1,gs,gs,c,c) into (-1,c*gs,c*gs)

Arguments

	gs: The Number of Nodes in each global Graph.

	c=2: The Number of Nodes in each subgraph.

gcomgraphlevel

Converts a 3d Tensor (-1,gs,gs) into (-1,c*gs,c*gs) by repetition

Arguments

	gs: The Number of Nodes in each Graph.

	c=2: The Number of repetition this Layer should do.

gcomjpool

Takes a Feature Vector of size (-1,gs,param) and some indices representing order indices (-1,gs) and uses these indices to reorders the Feature Vectors and applies a simple Dense Transformation to transform it into (-1,gs/c,paramo)

Arguments

	gs: The initial Number of Nodes in each Graph.

	param: The initial Number of Features.

	c=2: How many Feature Vectors to combine into each Outputvector. gs has to divide this

	paramo: The Number of Features in each Outputvector

	metrik_init=”glorot_uniform”: The initializer of the Transformation

	trainable=True: weather the Transformation is trainable

gcomparamcombinations

Takes a 3d Vector (-1,gs,param) and returns each possible Combination in gs (-1,gs,gs,param,2)

Arguments

	gs: The Number of Nodes in each Graph.

	param: The Number of Features in each Node.

gcomparamlevel

Takes a 4 Tensor of size(-1,gs,c,param) and levels it down into (-1,c*gs,param)

Arguments

	gs: The Number of Nodes in each global Graph.

	c: The Number of Nodes in each subgraph.

	param: The Number of Features in each Node.

gcomparastract

Cuts a Feature Vector of size (-1,gs,param) into (gs/c)*c Feature Vectors (-1,gs/c,c,param)

Arguments

	gs: The initial Number of Nodes in each Graph.

	c: The Size (Number of Nodes) of the Feature Vectors that will be cut out of the Input.

	param: The Number of Features in each Node.

gcompoolmerge

Takes a 4d vector of size (-1,gs,ags,param) and uses mode to transform it into (-1,gs,param)

Arguments

	gs: The Number of Nodes in each Graph.

	ags: The Number of Nodes in each subgraph.

	mode=”max”: The Transformation that will be used, has to be either “max”, “min” or “mean”

	param: The Number of Features in each Node.

gcompool

Orders a Feature vector of size (-1,gs,param), orders it by its last Feature and uses a simple Dense Layer to transform each c neighbouring Feature Vectors into one Feature Vector of size paramo (-1,gs/c,paramo)

Arguments

	gs: The initial Number of Nodes in each Graph.

	param: The initial Number of Features in each Node.

	paramo: The Number of Features in each output Node.

	c=2: How many Input Feature Vectors are to be transformed into one Output Vector

	metrik_init=”glorot_uniform”: Initializer of the Transformation

	learnable=True: Weather the Transformation is learnable.

gcomreopool

Takes an Adjacency Matrix and a Feature Vector and orders them by the last Feauture Index

Arguments

	gs: The Number of Nodes in each Graph.

	param: The Number of Features in each Node.

gcutparam

Splits a Feature Vector (-1,gs,param1+param2) into two Feature Vectors (-1,gs,param1) and (-1,gs,param2). Opposite of ghealparam.

Arguments

	gs: The Number of Nodes of the Graph (Graph Size)

	param1: The Number of Features for each node in the first output Vector

	param2: The Number of Features for each node in the second output Vector

gcutter

Cuts the last Nodes from a Featurevector (-1,inn,param) => (-1,out,param)

Arguments

	inn: The initial Number of Nodes of the Graph (Graph Size)

	out: The output Number of Nodes of the Graph, has to be at most as big as inn

	param: The Number of Features in each Feature vector

gecutter

Like gcutter, but leaves not the first but the last out nodes

Arguments

	inn: The initial Number of Nodes of the Graph (Graph Size)

	out: The output Number of Nodes of the Graph, has to be at most as big as inn

	param: The Number of Features in each Feature vector

gfeatkeep

If your Adjacency Matrix or (dimension+1) Adjacency Matrices are concattet, this can cut out the Feature Vector. Extension of gfeat

Arguments

	gs: The Number of Nodes of the Graph (Graph Size)

	param: The Number of Features in each Feature vector

	dimension=0: The Number of Adjacency Matrices concattet together (ignoring the first one) before the features

gfeat

If your Adjacency Matrix is concattet to the Feature Vector, this can cut out the Feature Vector

Arguments

	gs: The Number of Nodes of the Graph (Graph Size)

	param: The Number of Features in each Feature vector

	dimension=0: The Number of Adjacency Matrices concattet together (ignoring the first one) before the features

gfromparam

Transforms a 3 dimensional Featurevector (-1,gs,param) into a 2 dimensional Featurevector (-1,gs*param) that can be used for example with classical Dense Layers. Opposite of ggoparam

Arguments

	gs=1: The Number of Nodes of the Graph (Graph Size)

	param: The Number of Features in each Feature vector

ggoparam

Transforms a 2 dimensional Featurevector (-1,gs*param) into a 3 dimensional Featurevector (-1,gs,param). Opposite of gfromparam

Arguments

	gs=1: The Number of Nodes of the Graph (Graph Size)

	param: The Number of Features in each Feature vector

ggraphstract

Combines two Adjacency Matrices of size inn1 and inn2 respectively into one Adjacency Matrix of size inn1*inn2 by calculating the Kronecker Produkt
Both Inputs can have a Batch Dimension (-1,inn,inn) or not (inn,inn)

Arguments

	in1: The first Adjacency Matrix

	in2: The second Adjacency Matrix

ghealparam

Combines two Feature Vectors (-1,gs,param1) and (-1,gs,param2) into one Feature Vector (-1,gs,param1+param2). Opposite of gcutparam.

Arguments

	gs: The Number of Nodes of the Graph (Graph Size)

	param1: The Number of Features for each node in the first input Vector

	param2: The Number of Features for each node in the second input Vector

gkeepbuilder

Extension of gbuilder, allowing for multiple Adjacency Matrices (dimension+1) and a learnable metrik.

Arguments

	gs: The Number of Nodes of the Graph (Graph Size)

	param: The Number of Features for each node in the first input Vector

	free: Additional Features that are createt by this Layer

	learnable=True: Is the metrik learnable?

	dimension=0: Number of Additional Adjacency Matrices

	use0=False:Allows you to toggle, if your metrik and thus distance should include the first of the variables

gkeepcutter

Cuts a concattet Graph with (dimension+1) Adjacency Matrices of size inn into a Graph of size out

Arguments

	inn: The initial Number of Nodes of the Graph (Graph Size)

	out: The resulting Number of Nodes of the Graph (Graph Size)

	param: The Number of Features for each node in the first input Vector

	dimension=0: Number of Additional Adjacency Matrices

gkeepmatcut

Cuts out the first Adjacency Matrix out of a Concattet Graph with (dimension+1) Adjacency Matrices

Arguments

	gs: The gs Number of Nodes of the Graph (Graph Size)

	param: The Number of Features for each node in the first input Vector

	dimension=0: Number of Additional Adjacency Matrices

glacreate

Extension of glcreate to work also on a abstract data.

Arguments

	gs: The gs Number of Nodes of the Graph (Graph Size)

	param: The Number of Features for each node in the Feature Vector

	a=2: Size of the abstraction, think of this as the size of a second batch simension

glam

Extension of glm to work with abstract data
Inputs an Adjacency matrix and a Feature vector, and returns the updated Feature vector

Arguments

	gs: The gs Number of Nodes of the Graph (Graph Size)

	param: The Number of Features for each node in the Feature Vector

	a: Size of the abstraction, think of this as the size of a second batch simension

	iterations=1: repeat the Actions of this Layer iterations time

	alinearity=[-1.0,1.0]: activation of this Layer, explained better in glm

	kernel_initializer=”glorot_uniform”: Initializer of this Layer

	self_initializer=None: Instead of using kernel_initializer, this can be used to specify an initializer just for the self interaction of this Layer. Has preference over kernel_initializer.

	neig_initializer=None: Instead of using kernel_initializer, this can be used to specify an initializer just for the neighbour interaction of this Layer. Has preference over kernel_initializer

	learnable=True: weather this Layer has learnable Variables (self and neighbour interaction). Useful for debugging sometimes

glacreate

Extension of glcreate to work also on a abstract data.

Arguments

	gs: The gs Number of Nodes of the Graph (Graph Size)

	param: The Number of Features for each node in the Feature Vector

	a=2: Size of the abstraction, think of this as the size of a second batch simension

gliam

Extension of glim to work with abstract data. Inverts an equivalent glam.
Inputs an Adjacency matrix and a Feature vector, and returns the updated Feature vector

Arguments

	gs: The gs Number of Nodes of the Graph (Graph Size)

	param: The Number of Features for each node in the Feature Vector

	a: Size of the abstraction, think of this as the size of a second batch simension

	iterations=1: repeat the Actions of this Layer iterations time

	alinearity=[-1.0,1.0]: activation of this Layer, explained better in glm

	kernel_initializer=”glorot_uniform”: Initializer of this Layer

	self_initializer=None: Instead of using kernel_initializer, this can be used to specify an initializer just for the self interaction of this Layer. Has preference over kernel_initializer.

	neig_initializer=None: Instead of using kernel_initializer, this can be used to specify an initializer just for the neighbour interaction of this Layer. Has preference over kernel_initializer

	learnable=True: weather this Layer has learnable Variables (self and neighbour interaction). Useful for debugging sometimes

glim

A Layer that inverts a glm Layer with the same Variables.
Inputs an Adjacency matrix and a Feature vector, and returns the updated Feature vector

Arguments

	gs: The gs Number of Nodes of the Graph (Graph Size)

	param: The Number of Features for each node in the Feature Vector

	a: Size of the abstraction, think of this as the size of a second batch simension

	iterations=1: repeat the Actions of this Layer iterations time

	alinearity=[-1.0,1.0]: activation of this Layer, explained better in glm

	kernel_initializer=”glorot_uniform”: Initializer of this Layer

	self_initializer=None: Instead of using kernel_initializer, this can be used to specify an initializer just for the self interaction of this Layer. Has preference over kernel_initializer.

	neig_initializer=None: Instead of using kernel_initializer, this can be used to specify an initializer just for the neighbour interaction of this Layer. Has preference over kernel_initializer

	learnable=True: weather this Layer has learnable Variables (self and neighbour interaction). Useful for debugging sometimes

glkeep

Version of glm to handle concatted Graphs. Works with the first of (dimension+1) Adjacency Matrices.

Arguments

	gs: The gs Number of Nodes of the Graph (Graph Size)

	param: The Number of Features for each node in the Feature Vector

	a: Size of the abstraction, think of this as the size of a second batch simension

	iterations=1: repeat the Actions of this Layer iterations time

	alinearity=[-1.0,1.0]: activation of this Layer, explained better in glm

	kernel_initializer=”glorot_uniform”: Initializer of this Layer

	self_initializer=None: Instead of using kernel_initializer, this can be used to specify an initializer just for the self interaction of this Layer. Has preference over kernel_initializer.

	neig_initializer=None: Instead of using kernel_initializer, this can be used to specify an initializer just for the neighbour interaction of this Layer. Has preference over kernel_initializer

	learnable=True: weather this Layer has learnable Variables (self and neighbour interaction). Useful for debugging sometimes

	dimension=0: Number of additional Adjacency Matrices

glmlp

Extension of gltknd making the Update procedure more complicated and in line with particleNet. Here each update consists of 3 learnable Dense Layers with included Biases (thus breaking Graph Permutation Symmetry). In between each of these Layers is a Batch Normalisazion Layer and an activation (mlpact)

Arguments

	gs: The gs Number of Nodes of the Graph (Graph Size)

	param: The Number of Features for each node in the Feature Vector

	keepconst: The first keepconst Features are keept unchanced

	iterations=1: repeat the Actions of this Layer iterations time

	alinearity=[-1.0,1.0]: activation of this Layer, explained better in glm

	initializer=”glorot_uniform”: Initializer of this Layer

	i1: Size after the first Dense Layer

	i2: Size after the second Dense Layer

	mlpact=K.relu: Activation after each Dense Update Step. Requires to be a function

	momentum=0.99: Momentum of the BatchNormalisation

	k=16: Number of Average Connections in the Graph. Can be ignored, and is ignored in glm, but migth help the Network converge

glm

Central and probably most Important Layer of this Package. Updates a Feature Vector using its corresponding Adjacency Matrices and two learnabel Update Matrices. One selfInteraction Matrix that could be understood as a Dense Layer (without bias) acting on each Particle alone, and one neighbour Interaction Matrix, that connects, and acts on, the Node Features in the Way defined in the Adjacency Matrix
Inputs an Adjacency matrix and a Feature vector, and returns the updated Feature vector

Arguments

	gs: The gs Number of Nodes of the Graph (Graph Size)

	param: The Number of Features for each node in the Feature Vector

	iterations=1: repeat the Actions of this Layer iterations time

	alinearity=[-1.0,1.0]: activation of this Layer, is here written in such a way, that alinearities can be applied even when the Number of iterations is big, since every alinearity is defined in such a way, that appliyng it twice, wont do anything more than appliying it once. This is achieved by using relus to construct a function, that is the Identity between two Values (the two values that are inputtet into alinearity), and the first Value if the Input is below the first Value, as well as it is the second Value, if the Input is bigger than this second Value. To extend this, both Values can be set to minus infinity and infinity respectively, by setting this value to a String. To run other Alinearities, disable this Parameter by setting it to [] and run an Activation Layer afterwards.

	kernel_initializer=”glorot_uniform”: Initializer of this Layer

	self_initializer=None: Instead of using kernel_initializer, this can be used to specify an initializer just for the self interaction of this Layer. Has preference over kernel_initializer.

	neig_initializer=None: Instead of using kernel_initializer, this can be used to specify an initializer just for the neighbour interaction of this Layer. Has preference over kernel_initializer

	learnable=True: weather this Layer has learnable Variables (self and neighbour interaction). Useful for debugging sometimes

glom

An early Try of getting a better Update Step, that does not work at the moment, and is only in here for mild technical reasons

gl

Old Preceding Version of glm, that works on concattet Graphs, but unlike glkeep does not allow for any dimension parameter

Arguments

	graphmax: What is usually called gs. The Number of Nodes of the Graph (Graph Size)

	graphvar: What is usually called param,The Number of Features for each node in the Feature Vector

	keepconst: The Number of Features that are manually kept unchanced by this Layer

	iterations=1: repeat the Actions of this Layer iterations time

	alinearity=[-1.0,1.0]: activation of this Layer, explained in glm

	kernel_initializer=”glorot_uniform”: Initializer of this Layer

gltknd

Precessor of glm. glm works by using a Kronecker Product to convert the Update into only One Matrix. This allows to invert Layers and accelerates high iterations. The central difference to gltknd is that gltknd is not written like this, but calculates each update step on each own. This should mostly be only useful if you require keepconst.

Arguments

	gs: The gs Number of Nodes of the Graph (Graph Size)

	param: The Number of Features for each node in the Feature Vector

	keepconst: The first keepconst Features are kept unchanced

	iterations: Repeat the Actions of this Layer iterations time

	alinearity=[-1.0,1.0]: activation of this Layer, explained in glm

	kernel_initializer=”glorot_uniform”: Initializer of this Layer

	self_initializer=None: Instead of using kernel_initializer, this can be used to specify an initializer just for the self interaction of this Layer. Has preference over kernel_initializer.

	neig_initializer=None: Instead of using kernel_initializer, this can be used to specify an initializer just for the neighbour interaction of this Layer. Has preference over kernel_initializer

	learnable=True: weather this Layer has learnable Variables (self and neighbour interaction). Useful for debugging sometimes

gltk

Precessor of gltknd. Does not allow for different initializer for each Interaction type.

Arguments

	gs: The gs Number of Nodes of the Graph (Graph Size)

	param: The Number of Features for each node in the Feature Vector

	keepconst: The first keepconst Features are kept unchanced

	iterations: The Actions of this Layer are repeatet iterations time

	alinearity=[-1.0,1.0]: activation of this Layer, explained in glm

	kernel_initializer=”glorot_uniform”: Initializer of this Layer

gltrivmlp

Copy of glmlp but with a trivial update procedure (cut to the desired size). Sometimes useful for debugging

Arguments

	gs: The gs Number of Nodes of the Graph (Graph Size)

	param: The Number of Features for each node in the Feature Vector

	keepconst: The first keepconst Features are keept unchanced

	iterations=1: repeat the Actions of this Layer iterations time

All remaining Parameters can be given, but have no effect

	alinearity=[-1.0,1.0]: activation of this Layer, explained better in glm

	initializer=”glorot_uniform”: Initializer of this Layer

	i1: Size after the first Dense Layer

	i2: Size after the second Dense Layer

	mlpact=K.relu: Activation after each Dense Update Step. Requires to be a function

	momentum=0.99: Momentum of the BatchNormalisation

	k=16: Number of Average Connections in the Graph. Can be ignored, and is ignored in glm, but migth help the Network converge

gmake1graph

Generates a trivial Graph of size (-1,1,1) that is entirely 1 and uses the Batch dimension of the Input

Arguments

none

gmultiply

Takes a feature Vector and multiplies each Number of Nodes by copiyng it c times. So transforms (-1,gs,param) into (-1,gs*c,param)

Arguments

	gs: The Number of Nodes of the Graph (Graph Size)

	param: The Number of Features in each Feature vector

	c=2: The Number of repetitions

gortho

Runs a random, but fixed orthogonal Transformation mixing the Features

Arguments

	gs: The Number of Nodes of the Graph (Graph Size)

	param: The Number of Features in each Feature vector

	seed=None: seed generating the Transformation

gpartinorm

Normalises each Feature in each Batch in a special way:
After subtracting the mean of each vector x, it subtracts the mean(abs(x)) from it, just to divide it by (mean(abs(x))+max(abs(x)))/2.

Arguments

	gs: The Number of Nodes of the Graph (Graph Size)

	param: The Number of Features in each Feature vector

	alpha=0.01: A numeric Constant to remove divergences from dividing (instead of 1/a it uses 1/(abs(a)+alpha))

gperm

Probably a useless Layer since it only works in a 16dimensional Feature Space.
Similar to gortho, but uses a (fixed) Permutation Matrix.

Arguments

	gs: The Number of Nodes of the Graph (Graph Size)

	param: The Number of Features in each Feature vector

gpoolgrowth

Takes a List of Featurevectors for one Node (-1,param) and the old Feature vector, to learn from this 2d Vector (out-inn) new nodes (using a 1 layer dense), that are concattet to the old Featurevector and returned

Arguments

	inn: The initial Number of Nodes of the Graph (Graph Size)

	out: The resulting Number of Nodes of the Graph (Graph Size)

	param: The Number of Features for each Node

	kernel_initializer=glorot_uniform: The initializer of the Transformation

gpool

Simple Pooling Layer. Allows you to reduce a 3 dimensional Tensor (-1,gs,param) into (-1,param) by running a Pooling Operation on each Node. Is the simplest way to finish a classical Graph Network that does not break Graph Permutation Symmetry

Arguments

	gs: The Number of Nodes of the Graph (Graph Size)

	param: The Number of Features for each Node

	mode=”max”: Pooling Operation, either “max”,”mean” or “sum”

gpre1

One of the Data Preproccessing Layers that is mostly not useful for anything not Particle Physics related, since it assumes the Input to be a list of lists of Momentum 4 vectors.
Is Outdatet, buggy and only here for consistency

Arguments

	gs: The Number of Particles used, will become the Number of Nodes (Graph size)

	numericC=10000: A Numerical Constant that will be sometimes used to keep things finite

Produced Features

	E

	p1

	p2

	p3

	eta

	phi

	m

	pt (transverse momentum)

	p (absolute Value of the Momentum 3 vector)

	iszero (a flag to filter out missing(zero) particles)

gpre2

One of the Data Preproccessing Layers that is mostly not useful for anything not Particle Physics related, since it assumes the Input to be a list of lists of Momentum 4 vectors.
Is Outdatet, buggy and only here for consistency

Arguments

	gs: The Number of Particles used, will become the Number of Nodes (Graph size)

	numericC=10000: A Numerical Constant that will be sometimes used to keep things finite

Produced Features

	eta-mean(eta)

	phi-mean(phi)

	ln(pt)

	ln(E)

	-ln(pt/sum(pt))

	-ln(E/sum(E))

	sqrt((eta-mean(eta))**2+(phi-mean(phi))**2)

	iszero (a flag to filter out missing(zero) particles)

gpre3

One of the Data Preproccessing Layers that is mostly not useful for anything not Particle Physics related, since it assumes the Input to be a list of lists of Momentum 4 vectors.
Is Outdatet, buggy and only here for consistency

The only chance to gpre2 is the position of the flag

Arguments

	gs: The Number of Particles used, will become the Number of Nodes (Graph size)

	numericC=10000: A Numerical Constant that will be sometimes used to keep things finite

Produced Features

	iszero (a flag to filter out missing(zero) particles)

	eta-mean(eta)

	phi-mean(phi)

	ln(pt)

	ln(E)

	-ln(pt/sum(pt))

	-ln(E/sum(E))

	sqrt((eta-mean(eta))**2+(phi-mean(phi))**2)

gpre4

One of the Data Preproccessing Layers that is mostly not useful for anything not Particle Physics related, since it assumes the Input to be a list of lists of Momentum 4 vectors.
Is Outdatet, buggy and only here for consistency

Less Attributes than gpre3

Arguments

	gs: The Number of Particles used, will become the Number of Nodes (Graph size)

	numericC=10000: A Numerical Constant that will be sometimes used to keep things finite

Produced Features

	iszero (a flag to filter out missing(zero) particles)

	eta-mean(eta)

	phi-mean(phi)

gpre5

One of the Data Preproccessing Layers that is mostly not useful for anything not Particle Physics related, since it assumes the Input to be a list of lists of Momentum 4 vectors.

Extended and debugged Version of gpre4

Arguments

	gs: The Number of Particles used, will become the Number of Nodes (Graph size)

	numericC=10000: A Numerical Constant that will be sometimes used to keep things finite

Produced Features

	iszero (a flag to filter out missing(zero) particles)

	eta-mean(eta)

	phi-mean(phi)

	-ln(pt/sum(pt))

gremoveparam

A simple Layer to remove Features

Arguments

	gs: The Number of Nodes of the Graph (Graph Size)

	inn: The initial Number of Features for each Node

	out: The resulting Number of Features for each Node

gshuffle

Shuffles each Featurevector in a random Manner. But compared to gortho, the Transformation is not constant in training but the seed only sets the inital transformation

Arguments

	gs: The Number of Nodes of the Graph (Graph Size)

	param: The Number of Features in each Feature vector

	seed=None: seed generating the Transformation

gssort

Sorts a Featurevector in descending Order by its index Feature

Arguments

	gs: The Number of Nodes of the Graph (Graph Size)

	param: The Number of Features in each Feature vector

	index=-1: Feature Index by which to sort

gsym

Symmetrises a Adjacency Matrix, by adding the Transposed Matrix to it and rounding it (rounding is simplified by setting the Numerical constant to a low fixed Value of 5). You could understand this as a connection A_ij is one, if either A_ij or A_ji is one.

Arguments

	gs: The Number of Nodes of the Graph (Graph Size)

gtbuilder

Similar to the other builders on concattet graphs, but uses exactly 2 Adjacency Matrices which are combined in way defined by a constant metrik, creating a concattet graph with only 1 Adjacency Matrix

Arguments

	gs: The Number of Nodes of the Graph (Graph Size)

	param: The Number of Features for each Node

	free: The Number of empty Features this Node creates

gtlbuilder

Similar to gtbuilder but the Metrik is learnable and initialised to 1

Arguments

	gs: The Number of Nodes of the Graph (Graph Size)

	param: The Number of Features for each Node

	free: The Number of empty Features this Node creates

gtopk

The probably most useful Graph creation algorithm in this Package. Runs a TopK algorithm, connecting each node to its K neirest neighbours in a Space with a learnable Metrik.

Arguments

	gs: The Number of Nodes of the Graph (Graph Size)

	param: The Number of Features for each Node

	k: How many connections should each node have

	free: How many empty Features does this Layer create

	learnable: Weather the metrik should be learnable

	self_interaction=False: Should connections from a node to its self be allowed? Please note, that for any metrik with elements below zero does not require that the distance from a node to another node is minimal when both nodes are the same.

	self_interaction_const=100.0: To disallow connections between the same nodes, the Layer adds this constant to the distance between those nodes, so this constant should probably be modified if needed and the order of magnitude of the Input is large.

	metrik_init=keras.initializers.TruncatedNormal(mean=0.0,stddev=0.05): Initializer of the metrik defining distances

	numericalC=10000: Constant for Numerical Safety

	emptyconst=100000000.0: This Layer understands Flags. Sums distances between non flagged Nodes with this constant. It is so much higher than self_interaction_const, since the Graph Permutation Symmetry henges on it

	flag=7: The Flag index

gvaluation

Takes a Featurevector and concats it with a new Feature that is a learnable (simple Dense) Function of the old Features

Arguments

	gs: The Number of Nodes of the Graph (Graph Size)

	param: The Number of Features for each Node

	metrik_init=”glorot_uniform”: initializer of the Function

	learnable=True: Should the Function be learnable

multidense

Runs just a list of Dense Layers (defined by m.mdense* and by the parameter q, which gives width and number of Layers) on the last axis of the input data

Arguments

	g: A grap Class containing an Adjacency Matrix and a Feature vector, as well as a state Class containing the current standart Values for gs(=Graph Size, Number of Nodes in the Graph) and param (=Parameter Count, Number of Features for each Node)

	m: The Constants defining the Function Behaviours (matching Parameters below)

	q: An Array setting the size of each Layer [8,4,7] creates 3 Dense Layers with 8,4 and 7 nodes respectively

Constants defined in m

	mdense_activation=”relu”: The Activation of each Dense Layer

	mdense_init_kernel=tf.keras.initializers.Identity(): Kernel Initializer of each Layer

	mdense_init_bias=tf.keras.initializers.Zeros(): Bias Initializer of each Layer

	mdense_usebias=True: Should this Networks use a Bias Term

	mdense_batchnorm=False: Should you use a BatchNormalisationLayer after each Layer

norm

Normalises a network on the last axis, scale decides if there is a learnable multiplicative factor

Arguments

	g: A grap Class containing an Adjacency Matrix and a Feature vector, as well as a state Class containing the current standart Values for gs(=Graph Size, Number of Nodes in the Graph) and param (=Parameter Count, Number of Features for each Node)

	scale=True: Weather the output of the BatchNormalisationLayer has a learnable scaling Factor. Can be useful to disable this in special Situations, for example, when working in front of an Autoencoder

prep

Runs my standart preparation on an Input which it defines itself and also returns this Input

Arguments

	g: A grap Class containing an Adjacency Matrix and a Feature vector, as well as a state Class containing the current standart Values for gs(=Graph Size, Number of Nodes in the Graph) and param (=Parameter Count, Number of Features for each Node)

	m: The Constants defining the Function Behaviours (matching Parameters below)

Constants defined in m

	prenorm=False: Should each Feature be normalised (using norm with scale=False) after preperation

Functional Api

The Functional Api is less powerful than the Layer Api, but also easier to handle. And since some functions are really complicated, using the Functional Api as much as possible is usually recommended.

Contents:

	multidense

	norm

	prep

	gq

	gaq

	gnl

	learngraph

	gll

	ganl

	abstr

	compress

	graphatbottleneck

	denseladder

	divtriv

	divccll

	divpar

	divcla

	divcla2

	divgra

	remparam

	handlereturn

	sortparam

	subedge

	edgeconv

	ge

	shuffleinp

	orthoinp

	perminp

	pnorm

	prevcut

	goparam

	decompress

multidense

A function to add multiple Dense Layers with parameters defined by constants like m.dense*, aswell as the node numbers of the values of the list q. Dense Layers only update the last axis of a Tensor.

Arguments:

	g: a grap object

	m: a constant object (generated for example by getm())

	q: a list of node numbers

Returns:

	g: the updated grap object

norm

Normalises a network on the last axis (using keras BatchNormalization layer), scale decides if there is a learnable multiplicative factor

Arguments:

	g: a grap object

	scale=True: should the BatchNormalization layer include a scaling factor (disable if infront of your autoencoder)

Returns:

	g: the updated grap object

	inp: the model input layer

prep

Runs my standart Input preparation. Probably not useful except for physics
(create an Input, gpre5 on it and optionally use norm (decided by m.prenorm))

Arguments:

	g: a grap object, already containing gs and param in the state object s

	m: a constant object (generated for example by getm())

gq

function to work with alternative Input format (here Dense Layer on concat(self_values, neigbour_values)), migth be extended to use Convolutions. Defined by m.gq*

Arguments:

	g: a grap object

	m: a constant object (generated for example by getm())

	steps=4: how many update steps between after glcreate

Returns:

	g: the updated grap object

gaq

like gq but to work on a bit more abstract data (defined by m.gaq*)
(for use in graphs of graphs)

Arguments:

	g: a grap object

	m: a constant object (generated for example by getm())

	a: which abstraction constant is used

	steps=4: how many update steps between after glcreate

Returns:

	g: the updated grap object

gnl

a function to just add some graph update functionality without relearning the graph, defined by m.graph*. Can use usei to use inverted Graph update layers instead of the normal ones (to make invertibility easier). Also understands alin (iarities) as a vector

Arguments:

	g: a grap object

	m: a constant object (generated for example by getm())

	alin=[]: alinearity used, defined in glm

	iterations=1: run each graph update step iteration times (one layer)

	repeat=1: repeat this function repeat times (multiple layers)

	usei=False: use inverse graph update layers

Returns:

	g: the updated grap object

learngraph

Learns a graph (g.A) as a function of the parameters (g.X). Can also add new parameters to g.X (with free) and you can specify how many connections each node should have (k), mainly used by gll

Arguments:

	g: a grap object

	free=0: add how many new free parameters to each feature vector

	k=4: the k used in the topK layer

Returns:

	g: the updated grap object

gll

gnl + learngraph

Arguments:

	g: a grap object

	m: a constant object (generated for example by getm())

	free: add how many free parameters to each feature vector

	alin=[]: alinearity used, defined in glm

	iterations=1: run each graph update step iteration times (one layer)

	repeat=1: repeat this function repeat times (multiple learnings)

	subrepeat=1: repeat the gnl function this many times (multiple layers)

	usei=False: use inverse graph update layers

	k=4: the k in the topK algorithm

ganl

gnl but on more abstract graphs, should probably not be used directly unless you unstand what the difference is

Arguments:

	A: an Adjacency Matrix

	X: a list of Feature vectors

	gs: the node number

	a: the abstraction factor

	param: how many parameters for each feature vector

	iterations=1: run each graph update step iteration times (one layer)

	alin=[]: alinearity used, defined in glm

	usei=False: use inverse graph update layers

Returns:

	X: the updated feature object

abstr

	uses (multiglam) glam to abstract a graph into a factor c smaller graph

	
	uses pooling to go from c size subgraphs to 1 size dots

	
	does not chance param at all

	
	uses (pmode) param pooling mode

	uses (gmode) graph pooling mode

Arguments:

	g: a grap object

	c: the abstraction factor

	alin=[]: alinearity used, defined in glm

	iterations=1: run each abstracted graph update step iteration times (one layer)

	repeat=1: repeat this function repeat times (multiple abstractions)

	multiglam=1: repeat the graph updatedd function this many times (multiple layers)

	pmode=”max”: how to merge feature vectors. Options defined in gcompoolmerge

	**gmode=”mean”: how to merge the adjacency matrix. Options defined in gcomgraphcutter

Returns:

	g: the updated grap object

compress

little brother of abstr, the main difference is, that this does not keep any information of the graph, so you have to retrain it, if you want to do graph actions afterwards

Arguments:

	g: a grap object

	m: a constant object (generate for example by getm())

	c: the abstraction factor

	addparam: add how many new parameters

Returns:

	g: the updated grap object

graphatbottleneck

handles the bottleneck transformations for a pure graph ae, return g, compressed, new input, shallfp=True=>convert vector in matrix (with gfromparam), can use redense to add a couple dense layers around the bottleneck (defined by m.redense*)

Arguments:

	g: a grap object

	m: a constant object (generate for example by getm())

	shallfp=True: reshapes the 2 dimensional vector (-1, latent_size) into a 3 dimensional vector (-1,g.s.gs,g.s.param) after this function only if this is true

Returns:

	g: the updated grap object

denseladder

helper function that generates a list of Dense sizes going from 1 to c in n steps (excluding 1 and c), c can be a list, than returns a list of lists

Arguments:

	c: how many nodes should be the final node number. if is a list, repeats this layer for each value and returns then a list of lists

	n=3: how many steps to take

	truestart=False: start with 1?

Returns:

	l: a list of integers

divtriv

	trivial graph diverger by a factor of c (does not chance param at all)

	
	requiregp=True: require ggoparam at the start

	addDense: intermediate Dense Layers, sizes between 1 and c useful

Best handled decompress

Arguments:

	g: a grap object

	c: the abstraction factor

	m: a constant object (generate for example by getm())

	shallgp: if the input is 3 dimensional, set this to true. if it is already 2 dimensional (since graphatbottleneck) set it to false

	addDense=[[]]: intermediate Dense layer sizes

	activation: activation of the dense layers

Returns:

	g: the updated grap object

divccll

easy diverger: diverge by copy
Best handled by decompress

Arguments:

	g: a grap object

	c: the abstraction factor

Returns:

	g: the updated grap object

divpar

A parameter like graph diverger by a factor of c (also does not chance param at all)
Best handled by decompress

Arguments:

	g: a grap object

	c: the abstraction factor

	usei=False: Use inverse graph update steps

	alin=[]: alinearity of the graph update steps, defined in glm

	iterations=1: repeat each graph update step this many time (one layer)

	repeat=1: repeat this layer repeat time (multiple divergences)

	multiglam=1: multiglam graph update steps (multiple layers)

	amode2=”prod”: combine graphs using this function, options defined in gcomgraphand2

Returns:

	g: the updated grap object

divcla

classic graph abstractor, also does not chance the paramsize, just goes from one param to c params, and has one learnable matrix (which is const between the elements). Works by usual parameter divergence, and then by abstracting the graphs, with the constant learnable one
Best handled by decompress

Arguments:

	g: a grap object

	c: the abstraction factor

	m: a constant, defined for example by getm()

	repeat=1: repeat this layer repeat time (multiple divergences)

Returns:

	g: the updated grap object

divcla2

even more simple divcla, the main difference is, that this ignores graphs completely
Best handled by decompress

Arguments:

	g: a grap object

	c: the abstraction factor

	m: a constant, defined for example by getm()

	repeat=1: repeat this layer repeat time (multiple divergences)

Returns:

	g: the updated grap object

divgra

	graph like graph diverger by a factor of c (also does not chance param at all)

	
	amodeand operation modus for graphand

	amode2 : and operation modus for graphand2

Best handled by decompress

Arguments:

	g: a grap object

	c: the abstraction factor

	m: a constant variable. created for example by getm()

	usei=False: Use inverse graph update steps

	alin=[]: alinearity of the graph update steps, defined in glm

	iterations=1: repeat each graph update step this many time (one layer)

	repeat=1: repeat this layer repeat time (multiple divergences)

	multiglam=1: multiglam graph update steps (multiple layers)

	amode=”prod”: combine parameters by this, options defined in gcomgraphand

	amode2=”prod”: combine graphs using this function, options defined in gcomgraphand2

Returns:

	g: the updated grap object

remparam

just a simple function to remove overdue parameters

Arguments:

	g: a grap object

	nparam: output parameter number

Returns:

	g: the updated grap object

handlereturn

	a nice function to simplify returning values for createbothmodels. Also has some simple size consistency checks

	the variables:

Arguments:

	inn1: initial input Variable

	raw: preconverted input Variable, for comparison sake

	com: compressed Variable

	inn2: input for decoder

	decom: decompressed decoder Variable

	shallvae: shall you thread this like a variational auto encoder? hier just a bodge of an solution

Returns:

	inn1: the first input

	raw: preprocessed value

	c1: mean/latent space

	c2: variance/latent space

	shortcuts=[]: shortcut variable, disabled here

	inn2: the decompression input

	decom: output value

sortparam

sorts X by one of its parameters (m.sortindex), just removes the graph

Arguments:

	g: a grap object

	m: constant variable, created for example by getm()

Returns

	g: the updated grap value

subedge

one particlenet like update step, uses m.edge*

Arguments:

	inp: input variable

	param: number of parameters

	m: constant variable, created for example by getm()

Returns

	feat3: an updated feature vector

edgeconv

one set of particlenet like update steps, thus use m.edge* like subedge. also similar to gq (here the main difference is the dense vs convolutional structure

Arguments:

	inp: input variable

	gs: node number

	k: the k in topK

	param: number of parameters

	m: constant variable, created for example by getm()

Returns

	outp: the updated feature vector

ge

the upper level managing particlenet like update steps (like edgeconv and subedge, can mostly use m.edgeconcat to decide if you should concat or replace the output (concat:like particlenet, replace:probably better for autoencoder)

Arguments:

	g: a grap object

	m: constant variable, created for example by getm()

	k=4: the k in topK

Returns

	g: the updated grap value

shuffleinp

shuffles the inputs, cross particle…sadly does not keep the shuffle constant

Arguments:

	g: a grap object

	seed=None: optional seed

Returns

	g: the updated grap value

orthoinp

like shuffleinp, but uses an orthogonal matrix instead of shuffle, thus constant, but mixes the inputs in a certain way

Arguments:

	g: a grap object

	seed=None: optional seed

Returns

	g: the updated grap value

perminp

like orthoinp, but uses an permutation matrix instead of an orthogonal one. migth require some improvements in gperm.py before it becomes truly useful

Arguments:

	g: a grap object

Returns

	g: the updated grap value

pnorm

runs a normation on each particle and feature, ignoring the first one
ignores the first variable. and the normation is defined in gpartinorm

Arguments:

	g: a grap object

Returns

	g: the updated grap value

prevcut

cuts in gs, takes only the last ops values

Arguments:

	g: a grap object

	ops=4: returns only the last ops nodes

Returns

	g: the updated grap value

goparam

transforms the 3d (-1,gs,param) data into 2d (-1,gs*param) ones. You can use chanceS to disallow this function to chance the settings

Arguments:

	g: a grap object

	chanceS=True: chances the variable of g.s is this is True

Returns

	g: the updated grap value

decompress

function to run diverge algorithms on the input. You can choose the diverge algorithm with m.decompress (trivial, paramlike,graphlike,classic,classiclg,ccll), c can be a list (multiple divergences) and also handles the bottleneck actions (define a new input, and return it later). Always returns: g,compressed version,new input

Arguments:

	g: a grap object

	m: a constant variable. created for example by getm()

	c: the abstraction factor

Returns

	g: the decompressed grap value

	com: latent space vector

	inn2: input for the decompressor

Index

glcreate

Takes an Adjacency Matrix and a Feature Vector and create a Feature Vector from this encoding the locality. This is done by concatting for each Feature the old Feature vector and the Feature sum of all neighbouring nodes.

Arguments

	gs: The gs Number of Nodes of the Graph (Graph Size)

	param: The Number of Features for each node in the Feature Vector

This should be the title

and this is some information regarding something written in rst

Will be used for something and something will be used

Arguments

	q: just some random constant

	p: another constant

 nav.xhtml

 Table of Contents

 		
 Grapa: Graph Autoencoder for tensorflow

 		
 Download my Masters thesis

 		
 Getting started

 		
 Top Tagging

 		
 Finding unused accounts in a social Network

 		
 Faster regression on molecular data

 		
 Anomaly Detection on Feynman Diagramms

 		
 Generating recipes using grapa and a gan

 		
 Layer Api

 		
 gadd1

 		
 gaddbias

 		
 gaddzeros

 		
 gaddparam

 		
 gbrokengrowth

 		
 glbuilder

 		
 gchooseparam

 		
 gcomdensediverge

 		
 gcomdensemerge

 		
 gcomdepoollg

 		
 gcomdepoolplus

 		
 gcomdepool

 		
 gcomdex

 		
 gcomdiagraph

 		
 gcomextractdiag

 		
 gcomfullyconnected

 		
 gcomgpool

 		
 gcomgraphand2

 		
 gcomgraphand

 		
 gcomgraphcombinations

 		
 gcomgraphcutter

 		
 gcomgraphfrom2param

 		
 gcomgraphfromparam

 		
 gcomgraphlevel

 		
 gcomgraphlevel

 		
 gcomjpool

 		
 gcomparamcombinations

 		
 gcomparamlevel

 		
 gcomparastract

 		
 gcompoolmerge

 		
 gcompool

 		
 gcomreopool

 		
 gcutparam

 		
 gcutter

 		
 gecutter

 		
 gfeatkeep

 		
 gfeat

 		
 gfromparam

 		
 ggoparam

 		
 ggraphstract

 		
 ghealparam

 		
 gkeepbuilder

 		
 gkeepcutter

 		
 gkeepmatcut

 		
 glacreate

 		
 glam

 		
 glacreate

 		
 gliam

 		
 glim

 		
 glkeep

 		
 glmlp

 		
 glm

 		
 glom

 		
 gl

 		
 gltknd

 		
 gltk

 		
 gltrivmlp

 		
 gmake1graph

 		
 gmultiply

 		
 gortho

 		
 gpartinorm

 		
 gperm

 		
 gpoolgrowth

 		
 gpool

 		
 gpre1

 		
 gpre2

 		
 gpre3

 		
 gpre4

 		
 gpre5

 		
 gremoveparam

 		
 gshuffle

 		
 gssort

 		
 gsym

 		
 gtbuilder

 		
 gtlbuilder

 		
 gtopk

 		
 gvaluation

 		
 multidense

 		
 norm

 		
 prep

 		
 Functional Api

 		
 multidense

 		
 norm

 		
 prep

 		
 gq

 		
 gaq

 		
 gnl

 		
 learngraph

 		
 gll

 		
 ganl

 		
 abstr

 		
 compress

 		
 graphatbottleneck

 		
 denseladder

 		
 divtriv

 		
 divccll

 		
 divpar

 		
 divcla

 		
 divcla2

 		
 divgra

 		
 remparam

 		
 handlereturn

 		
 sortparam

 		
 subedge

 		
 edgeconv

 		
 ge

 		
 shuffleinp

 		
 orthoinp

 		
 perminp

 		
 pnorm

 		
 prevcut

 		
 goparam

 		
 decompress

_static/up.png

_static/down.png

_static/file.png

_static/plus.png

_static/minus.png

_static/up-pressed.png

_static/comment-close.png

_static/comment-bright.png

_static/down-pressed.png

_static/comment.png

_static/ajax-loader.gif

